
1

Work with Arduino
Hardware

• “Install Support for Arduino Hardware” on page 1-2

• “Open Block Libraries for Arduino Hardware” on page 1-9

• “Run Model on Arduino Hardware” on page 1-12

• “Tune and Monitor Models Running on Arduino Mega 2560 Hardware”
on page 1-14

• “Use Serial Communications with Arduino Hardware” on page 1-18

• “Detect and Fix Task Overruns on Arduino Hardware” on page 1-21

• “Troubleshoot Running Models on Arduino Hardware” on page 1-23

1 Work with Arduino® Hardware

Install Support for Arduino Hardware
This topic shows how to add support for Arduino® hardware to the Simulink®

product. After you complete this process, you can run Simulink® models on
your Arduino® hardware.

The installation process adds the following items to your host computer:

• Third-party software development tools, such as the Arduino® software

• A Simulink block library for configuring and accessing Arduino® sensors,
actuators, and communication interfaces

• Demos for getting started and learning about specific features

To check for updates, repeat this process when a new version of MATLAB
software is released. You can also check for updates between releases.

Note You can use this software on host computers running versions of 32-bit
or 64-bit Windows® that Simulink® software supports.

To install support for Arduino® hardware:

1 Start Target Installer using one of the following methods:

• In a MATLAB® Command Window, enter targetinstaller.

• In a model, click the Tools menu, and select Run on Target Hardware >
Install/Update Support Package.

2 Choose to get the support package from the Internet or from a folder.

Note The time required to downloading the support package and third-party
software varies depending on the bandwidth and speed of your Internet
connection.

1-2

Install Support for Arduino® Hardware

Internet: This option is selected by default. Target Installer downloads and
installs the support package and third-party software from the Internet.

Folder: Target Installer gets the support package and third-party software
installers from the specified folder. If the third-party software installers are
not available, Target Installer downloads and installs those from the Internet.

You must have write privileges for this folder. Having write privileges for the
default folder is typically not an issue. If you change to a new folder for which
you do not have write permissions, such as a shared folder on a network,
Target Installer generates an error message.

To solve this issue, copy the support package to a folder for which you have
write privileges, and point Target Installer to that same folder. For example,
copy the support package to C:\MATLAB\Targets\version\downloads. If
they are available, also copy the third-party software installers associated
with the support package.

To locate the support package in a folder, search for a filename
that begins with rtt_arduino and ends with .zip. For example:
rtt_arduinouno_r2012a_v1_0.zip

1-3

1 Work with Arduino® Hardware

3 Select the Install check box for either Arduino® target, and click Next >. (To
install another target, run Target Installer again later on.)

The Installation folder parameter tells Target Installer where to install the
target and associated third-party software. You must have write privileges
for this folder.

1-4

Install Support for Arduino® Hardware

4 Target Installer confirms that you are installing the target, and lists
third-party software it will install.

Review the information, including the license agreements, and click Install.

1-5

1 Work with Arduino® Hardware

Target Installer displays a progress bar while it downloads and installs the
third-party software.

1-6

Install Support for Arduino® Hardware

Note If you installed the target previously, Target Installer may remove files
from that installation before installing the current target. If Target Installer
cannot remove those files automatically, it instructs you to delete the files
manually. Close the MATLAB® software before removing the files. Then
restart MATLAB® software and run Target Installer again.

5 To view target demos, leave the Launch target demos checkbox selected
and click Finish.

1-7

1 Work with Arduino® Hardware

The Help that opens displays the appropriate demos for your hardware.

To find these demos again later, enter doc in the MATLAB Command
Window. In the Help that opens, look for Other Demos at the bottom of
the Contents list.

1-8

Open Block Libraries for Arduino® Hardware

Open Block Libraries for Arduino Hardware
You can open the block libraries for your Arduino® hardware from the
MATLAB Command Window or from the Simulink Library Browser.

The blocks in these block libraries provide support for various peripherals
available on the Arduino® hardware.

From the Command Line
After installing support for your Arduino® hardware, you can open its block
library from the MATLAB® Command Window.

After installing support for Arduino® hardware, enter:

arduinolib

The software opens the corresponding block library.

1-9

1 Work with Arduino® Hardware

From the Simulink Library Browser
To open the block library from the Simulink® Library Browser:

Enter simulink in the MATLAB® Command Window, or click the following
icon on the MATLAB® toolbar.

1-10

Open Block Libraries for Arduino® Hardware

In the Simulink® Library Browser, click Target for Use with Arduino
Hardware.

Simulink Library Browser displays the corresponding block library.

1-11

1 Work with Arduino® Hardware

Run Model on Arduino Hardware
You can prepare, configure, and run a model on your Arduino® hardware.

Before starting:

• Connect your Arduino® hardware to the host computer using a USB cable.

• Create or open a Simulink® model located on a local drive or a mapped
network drive that has a drive letter assigned to it.

The software generates an error message if the location of the model
contains a UNC path. For example, \\server-00\user$\MATLAB\

To prepare and run the model:

1 Use File > Save As to create a working copy of your model. Keep the original
model as a backup copy.

2 Click the Tools menu in the model, and select Run on Target Hardware >
Prepare to Run. This action changes the model Configuration Parameters.

3 In the Run on Target Hardware pane that opens, set the Target hardware
parameter to Arduino Mega 2560 or Arduino Uno.

4 Click the Tools menu, and select Run on Target Hardware > Run.
This action automatically downloads and runs your model on the Arduino®

hardware.

The lower left corner of the model window displays status while Simulink®

software prepares, downloads, and runs the model on the target hardware.

To stop a model running on Arduino® hardware, you can:

• Disconnect the power from the hardware. When you reconnect the power,
the model will start running again.

• Run a new or updated model on the hardware. This action automatically
stops and erases the previous model running on the Arduino® hardware.

To restart the model running on the Arduino® hardware, press the RESET
button on the board.

1-12

Run Model on Arduino® Hardware

Prepare Models That Use Model Reference
You can include one model in another by using Model blocks. Each instance
of a Model block represents a reference to another model, called a referenced
model or submodel. The model that contains a referenced model is its
parent model. When you run the parent model on your target hardware, the
submodel effectively replaces the Model block that references it. For more
information, see “Overview of Model Referencing”

To run on target hardware, the parent model and the submodels must have
the same Configuration Parameter settings.

For each Model block:

1 Open the model associated with the Model block.

2 Click the Tools menu, and select Run on Target Hardware > Prepare
to Run.

3 Apply the same Configuration Parameters settings to the submodel as you
applied to the parent model.

If the model and Model blocks have different settings, the software generates
an error when you try to run the model on the target hardware.

See Also

• “Creating the Simple Model”

• “Tune and Monitor Models Running on Arduino Mega 2560 Hardware”
on page 1-14

• “Overview of Model Referencing”

1-13

1 Work with Arduino® Hardware

Tune and Monitor Models Running on Arduino Mega 2560
Hardware

In this section...

“About External Mode” on page 1-14

“Run Your Model in External Mode” on page 1-15

“Stop External Mode” on page 1-17

About External Mode
You can use External mode to tune parameters in, and monitor data from,
your model while it is running on the Arduino® Mega 2560 hardware. This
capability is not available with Arduino® Uno hardware.

External mode enables you to tune model parameters and evaluate the effects
of different parameter values on the model results in real-time, in order to
find the optimal values to achieve the desired performance. This process
is called parameter tuning.

External mode accelerates parameter tuning because you do not have to
re-run the model each time you change parameters. External mode also lets
you develop and validate your model using the actual data and hardware for
which it is designed. This software-hardware interaction is not available
solely by simulating a model.

The following list provides an overview of the parameter tuning process with
External mode:

• In the model on your host computer, you enable External mode in the
Configuration Parameters.

• In the model on your host computer, you configure Simulink® software to
run your model on the target hardware.

• You use the model on the host computer as a user interface for interacting
with the model running on the target hardware:

1-14

Tune and Monitor Models Running on Arduino® Mega 2560 Hardware

- When you open blocks and apply new parameter values on the host
computer, External mode updates the corresponding values in the model
running on the target hardware.

- If your model contains blocks for viewing data, such as Scope or Display
blocks, External mode sends the corresponding data from the target
hardware to those blocks on the host computer.

• You determine the optimal parameter settings by adjusting parameter
values on the host computer and observing data/outputs from the target
hardware.

When you have finished tuning a model, you can disable External mode and
run the tuned model on your hardware.

Some limitations apply while you are using External mode:

• Do not configure Serial Receive or Serial Transmit blocks in your model to
use serial port 0. External mode uses serial port 0.

• Do not use the following Arduino® servo blocks: Standard Servo Read,
Standard Servo Write, and Continuous Servo Write.

Run Your Model in External Mode
Before starting:

• Connect your Arduino® Mega 2560 hardware to the host computer using a
USB cable.

• Create or open a Simulink® model located on a local drive or a mapped
network drive that has a drive letter assigned to it.

The software generates an error message if the location of the model
contains a UNC path. For example, \\server-00\user$\MATLAB\

To prepare and run the model:

1 Open your Simulink® model.

2 In the model, set the Simulation stop time parameter, located on the
model toolbar, as shown here.

1-15

1 Work with Arduino® Hardware

• To run the model for an indefinite period, enter inf.

• To run the model for a finite period, enter a number of seconds. For
example, entering 120 runs the model on the Arduino® hardware for
2 minutes.

3 Click the Tools menu, and select Run on Target Hardware > Options.

4 In the Run on Target Hardware pane that opens, select the Enable
External mode checkbox.

5 Click OK, and then save the changes to your model.

6 Click the Tools menu, and select Run on Target Hardware > Run.

The lower left corner of the model window displays status while Simulink®

software prepares, downloads, and runs the model on the target hardware.

7 While the model is running in External mode, you can change tunable
parameter values in the model on your host computer and observe the
corresponding changes in the model running on the hardware.

If your model contains blocks from the Simulink® Sinks block library,
the sink blocks in the model on your host computer display the values
generated by the model running on the hardware.

If your model does not contain a sink block to which External mode can
send data, the MATLAB® Command Window displays a “No data has been
selected for uploading” warning. You can disregard this warning, or you
can add a sink block to the model and rerun your model.

8 When you have finished tuning and monitoring your model, you can disable
External mode.

To deploy model to your hardware without using External mode. See “Run
Model on Arduino Hardware” on page 1-12:

1-16

Tune and Monitor Models Running on Arduino® Mega 2560 Hardware

Note External mode increases the processing burden of the model running
on the hardware. If the software reports an overrun, you can apply the
solutions described in “Detect and Fix Task Overruns on Arduino Hardware”
on page 1-21.

Stop External Mode
To stop the model running in External mode, click the black square Stop
button located on the model toolbar, as shown here.

This action stops the process for the model running on the Arduino® hardware,
and stops the model simulation running on your host computer.

If it is set to a finite period, the Simulation stop time parameter stops
External mode when the period elapses.

1-17

1 Work with Arduino® Hardware

Use Serial Communications with Arduino Hardware

In this section...

“Hardware” on page 1-18

“Transmit Serial Data” on page 1-19

“Receive Serial Data” on page 1-20

Arduino® hardware has serial ports, also known as UARTs, that can
communicate with other devices that have serial interfaces.

Hardware
The Arduino® Uno board has one serial port, serial port 0, connected to:

• The digital pins marked TX 1 (transmit) and RX 0 (receive).

• The USB port, through a serial-to-USB converter.

The Arduino® Mega 2560 board has four serial ports:

• Serial port 0 is connected to Communication pins marked TX0 1 (transmit)
and RX0 0 (receive). Serial port 0 is also connected to the USB port through
a converter.

• Serial port 1 is connected to Communication pins marked TX1 18 (transmit)
and RX1 19 (receive).

• Serial port 2 is connected to Communication pins marked TX2 16 (transmit)
and RX2 17 (receive).

• Serial port 3 is connected to Communication pins marked TX3 14 (transmit)
and RX3 15 (receive).

You can use serial port 0 to communicate with other devices that have serial
ports, or to communicate with a computer over the USB port.

Each serial port supports one Serial Transmit and one Serial Receive block,
one block per pin.

1-18

Use Serial Communications with Arduino® Hardware

If you intend to use External mode with Arduino® Mega 2560 hardware,
use serial ports 1 through 3 for serial communications. Serial port 0 is not
available for serial communications because it is connected to the USB port,
which External mode uses to communicate with the host computer. This
restriction does not apply to Arduino® Uno hardware, because External mode
is not supported. For more information, see “Tune and Monitor Models
Running on Arduino Mega 2560 Hardware” on page 1-14.

Serial communications are not supported in models that also use the Arduino®

Standard Servo Read, Standard Servo Write, and Continuous Servo Write
blocks.

Warning Only connect serial port pins to devices that use 5 Volt TTL
logic. Do not connect these pins to an RS-232 serial interface, such
as the DE-9M connector on a computer, without limiting the voltage.
The RS-232 standard allows higher voltages that can damage your
hardware. For details, read the documentation for your Arduino®

hardware.

Transmit Serial Data

1 Add the Arduino® Serial Transmit block to your model.

2 Connect a data source to the block input on the Serial Transmit block.

If the data type is not uint8, use a Data Type Conversion block to convert
it to uint8.

3 In the Serial Transmit block, specify a Port number.

4 Click the Tools menu in the model, and select Run on Target Hardware
> Options.

In the Configuration Parameters dialog that opens, set the baud rate
parameter of the serial port you specified in the Serial Transmit block.

5 Connect the appropriate digital transmit pin, or the USB port, to the
hardware that receives the data.

6 Build and run the model.

1-19

1 Work with Arduino® Hardware

Receive Serial Data

1 Add the Arduino® Serial Receive block to your model.

2 Connect the Data block output to a block that uses the data.

3 In the Serial Receive block, specify the Port number.

4 Click the Tools menu in the model, and select Run on Target Hardware
> Options.

In the Configuration Parameters dialog that opens, set the baud rate
parameter of the serial port you specified in the Serial Receive block.

5 Connect the appropriate digital receive pin, or the USB port, to the
hardware that transmits the data.

6 Build and run the model.

1-20

Detect and Fix Task Overruns on Arduino® Hardware

Detect and Fix Task Overruns on Arduino Hardware
You can configure a Simulink® model running on the target hardware to
detect and notify you when a task overrun occurs. A task overrun occurs if
the target hardware is still performing one instance of a task when the next
instance of that task is scheduled to begin. You can fix overruns by decreasing
the frequency with which tasks are scheduled to run, and/or by reducing the
number of tasks defined by your model.

To enable overrun detection:

1 Click the Tools menu in the model, and select Run on Target Hardware
and Options.

2 In the Run on Target Hardware pane that opens, select the Enable
overrun detection check box.

3 Use the Digital output to set on overrun parameter to specify the pin
number of a digital output.

4 Click OK.

To create a visual overrun indicator for your board, connect an appropriate
resistor in series with an LED between the GND and the hardware pin specified
by the Digital output to set on overrun parameter. Orient the LED so the
longer leg (positive) is connected to the digital output pin.

When a task overrun occurs:

• The state of the digital output pin specified by the Digital output to set
on overrun parameter changes from low (0 Volts) to high (5 Volts).

• The model continues running, but the effective sample time will be longer
than specified.

To fix an overrun condition, reduce the processing burden of the model by
applying one or more of the following solutions:

• Increase the sample times for the model. For example, increase the values
of the Sample time parameters in all of your data source blocks.

1-21

1 Work with Arduino® Hardware

• Simplify the model.

If you are using External mode, and the preceding solutions do not fix the task
overrun condition, consider clearing the Enable External mode checkbox
in the Run on Target Hardware pane. External mode adds a lightweight
server to the model running on the target hardware. This server increases
the processing burden upon the target hardware, which can contribute to a
task overrun condition.

1-22

Troubleshoot Running Models on Arduino® Hardware

Troubleshoot Running Models on Arduino Hardware

In this section...

“Block Produces Zeros in Simulation” on page 1-23

““Could not automatically set host COM port”” on page 1-23

Block Produces Zeros in Simulation
If you simulate a model on your host computer without running it on your
target hardware, input blocks produce zeros, and output blocks do nothing.
This is the expected behavior.

For example, if you select Simulation > Run in a model that contains a
Digital Input block and a Digital Output block:

• The block output on the Digital Input block produces zeros.

• The Digital Output block does nothing.

To solve this issue, run your model on the target hardware as described in:

• “Run Model on Arduino Hardware” on page 1-12

• “Run Your Model in External Mode” on page 1-15

“Could not automatically set host COM port”
If you try to run a model on your Arduino® hardware and Simulink generates
an error message similar to this one: “The call to realtime_make_rtw_hook,
during the entry hook generated the following error: Could not automatically
set host COM port for your Arduino® hardware. This may be due to a
disconnected or unrecognized board. If the board is not connected to your host
computer, connect it and let the operating system install the board driver.”

First, resolve any connection issues:

1 Verify that your Arduino® hardware is powered on and connected to your
host computer.

2 Try running the model again on your Arduino® hardware.

1-23

1 Work with Arduino® Hardware

If you get the error message while your board is powered on and connected to
your host computer, resolve any issues with Arduino® drivers in Windows:

1 In Windows, click the Start menu and select Devices and Printers.

2 If you find an Unknown Device under Other Devices or COM Ports,
double click the Unknown Device.

3 In the Unknown Device Properties dialog box that opens, click the
Hardware tab, and click Properties.

4 In the Unknown device Properties dialog box that opens, click Update
Driver.

5 In the Update Driver Software - Unknown Device dialog box that
opens, click Browse my computer for driver software.

6 Select the Include subfolders checkbox and click Browse.

7 Navigate to the Installation folder that Target Installer
used when you installed support for your Arduino® hardware,
and then click Next. By default, this folder location is
C:\MATLAB\Targets\releasenumber\arduino-version. For example:
C:\MATLAB\Targets\R2012a\arduino-1.0.

8 If prompted by Windows Security, choose Install this driver software
anyway, and let Windows complete the process of installing the driver.

9 Try running the model again on your Arduino® hardware.

If you get the error message after resolving issues with Arduino® drivers,
resolve any issues with the COM port settings. The drivers for some Arduino®

board revisions do not identify the board as an Arduino® device in Windows®.
In that case, set the COM port number manually:

1 Click the Tools menu in the model, and select Run on Target Hardware
> Options.

2 In the Run on Target Hardware pane, change the Set host COM port
parameter to Manually and leave the Configuration Parameters dialog
open.

1-24

Troubleshoot Running Models on Arduino® Hardware

3 Open Devices and Printers in Windows.

4 Double-click Arduino Uno or Arduino Mega 2560 device.

5 In the device properties dialog, click the Hardware tab, and then click the
Properties button.

6 Click the Port Settings tab.

For example, the following image shows an Arduino® device in Devices and
Printers, the Hardware tab, and the Port Settings tab.

7 In Configuration Parameters, update the COM port number and Serial 0
baud rate parameters to match those of the Arduino® device in Windows.

1-25

1 Work with Arduino® Hardware

8 Apply the new Configuration Parameter values, and try running the model
on your Arduino® hardware again.

1-26

Arduino Digital Input

Purpose Get logical value of digital input pin

Library Target for Use with Arduino® Hardware

Description
Get the logical value of a digital pin on the Arduino® hardware:

• If the logical value of the digital pin is LOW, the block outputs 0.

• If the logical value of the digital pin is HIGH, the block outputs 1.

The data type of the block output is uint8.

If you simulate your model without running it on the target hardware,
this block outputs zeroes. See “Block Produces Zeros in Simulation”

Warning

Only connect digital pins to devices that use 5 Volt TTL
logic. For details, read the documentation for your Arduino®

hardware.

-1

Arduino Digital Input

Dialog

Pin number
Enter the number of the digital pin.

Do not assign the same pin number to multiple blocks within the
model.

For Arduino® Mega 2560, enter a pin number from 0 to 53.

For Arduino® Uno, enter a pin number from 0 to 13.

-2

Arduino Digital Input

Sample time
Specify how often this block reads the pin value, in seconds. Enter
a value greater than zero. This value defaults to a sample time of
1 second. The minimum value is 0.000001 second.

Smaller values require the processor to complete the same number
of instructions in less time, which can cause task overruns.

See Also Arduino Digital Output | “Install Support for Arduino® Hardware” |
“Detect and Fix Task Overruns on Arduino® Hardware” |

External
Links

• http://arduino.cc/en/Reference/DigitalRead

-3

http://arduino.cc/en/Reference/DigitalRead

Arduino Digital Output

Purpose Set logical value of digital output pin

Library Target for Use with Arduino® Hardware

Description
Set the logical value of a digital pin on the Arduino® hardware:

• Sending 1 to the block input sets the logical value of the digital pin
HIGH to 5 V or 3.3 V, depending on the board voltage.

• Sending 0 to the block input sets the logical value of the digital pin
LOW to 0 V.

The block input inherits the data type of the upstream block, and
internally converts it to boolean.

If you simulate your model without running it on the target hardware,
this block does nothing. See “Block Produces Zeros in Simulation”.

-4

Arduino Digital Output

Dialog

Pin number
Enter the number of the digital output pin.

Do not assign the same pin number to multiple blocks within the
model.

For Arduino® Mega 2560, enter a pin number from 0 to 53.

For Arduino® Uno, enter a pin number from 0 to 13.

See Also Arduino Digital Input | “Install Support for Arduino® Hardware” |

External
Links

• http://arduino.cc/en/Reference/DigitalWrite

-5

http://arduino.cc/en/Reference/DigitalWrite

Arduino Analog Input

Purpose Measure voltage of analog input pin

Library Target for Use with Arduino® Hardware

Description
Measure the voltage of an analog pin relative to the analog input
reference voltage on the Arduino® hardware. Output the measurement
as a 10-bit value that ranges from 0 to 1023.

• If the measured voltage equals the ground voltage, the block outputs
0.

• If the measured voltage equals the analog reference voltage, the
block outputs 1023.

The default value of the analog input reference voltage is 0 to 5 V. To
change the Analog input reference voltage parameter in your model
Configuration Parameters, select Tools > Run on Target Hardware
> Options....

If you simulate your model without running it on the target hardware,
this block outputs zeroes. See “Block Produces Zeros in Simulation”

Warning

The range of the voltage that can be applied to the analog input
pin depends on the analog input reference voltage. For details,
read the documentation for your Arduino® hardware.

-6

Arduino Analog Input

Dialog

Pin number
Enter the number of the analog input pin.

Do not assign the same pin number to multiple blocks within the
model.

For Arduino® Mega 2560, enter a pin number from 0 to 15.

For Arduino® Uno, enter a pin number from 0 to 5.

-7

Arduino Analog Input

Sample time
Specify how often this block reads the pin value. Enter a value
greater than zero. This value defaults to a sample time of 1
second. The minimum value is 0.000001 second.

Smaller values require the processor to complete the same number
of instructions in less time, which can cause task overruns.

See Also Arduino PWM | “Analog input reference voltage” | “Install Support
for Arduino® Hardware” | “Detect and Fix Task Overruns on Arduino®
Hardware” |

External
Links

• http://arduino.cc/en/Reference/AnalogRead
• http://arduino.cc/en/Reference/AnalogReference

-8

http://arduino.cc/en/Reference/AnalogRead
http://arduino.cc/en/Reference/AnalogReference

Arduino PWM

Purpose Generate PWM waveform on analog output pin

Library Target for Use with Arduino® Hardware

Description
Use pulse-width modulation (PWM) to change the duty-cycle of
square-wave pulses output by a PWM pin on the Arduino® hardware.
PWM enables a digital output to provide a range of different power
levels, similar to that of an analog output.

The value sent to the block input determines the width of the square
wave, called duty-cycle, that the target hardware outputs on the
specified PWM pin. The range of valid outputs is 0 to 255.

For example:

• Sending the maximum value, 255, to the block input produces 100%
duty-cycle, which results in full power on a PWM pin.

• Sending the minimum value, 0, to the block input produces 0%
duty-cycle, which results in no power on a PWM pin.

• Sending an intermediate value to the block input produces a
proportional duty-cycle and power output on a PWM pin. For
example, sending 192 to the block input produces 75% duty cycle
and power (192/256 = 0.75).

• Sending out-of-range values, such as 500 or -500, to the block input
has the same effect as sending the maximum or minimum input
values.

The frequency of the square wave is ~490 Hz.

The block input inherits the data type of the upstream block, and
internally converts it to uint8.

-9

Arduino PWM

Some limitations:

• With Arduino® Uno hardware, the Arduino® PWM block cannot use
digital pins 9 or 10 when the model contains Servo blocks.

• With Arduino® Mega 2560 hardware, the Arduino® PWM block
cannot use digital pins 11 or 12 when the model contains more than
12 Servo blocks.

Dialog

Pin number
Enter the number of the PWM pin.

-10

Arduino PWM

Do not assign the same pin number to multiple blocks within the
model.

For Arduino® Mega 2560, enter a pin number from 2 to 13.

For Arduino® Uno, enter one of the following pin numbers, 3, 5, 6,
9, 10, and 11, which are marked with a ~ symbol.

See Also “Install Support for Arduino® Hardware” |

External
Links

• http://arduino.cc/en/Reference/AnalogWrite

-11

http://arduino.cc/en/Reference/AnalogRead

Arduino Serial Receive

Purpose Get one byte of data from serial port

Library Target for Use with Arduino® Hardware

Description
Get one byte of data per sample period from the receive buffer of
the specified serial port. For more information, see “Use Serial
Communications with Arduino® Hardware”.

The Serial Receive block has two block outputs, Data and Status.

When data is available:

• The Data block output emits data from the serial receive buffer.

• The Status block output emits 1.

When data is not available:

• The Data block output emits 255.

• The Status block output emits 0.

The datatype of the Data block output is uint8.

The datatype of the Status block output is int. You can use the Status
block output to determine whether a value of 255 emitted by the Data
block output is data, or an indication that no data was received.

If you simulate your model without running it on the target hardware,
this block outputs zeroes. See “Block Produces Zeros in Simulation”

Do not use this block in models with the Standard Servo Read, Standard
Servo Write, and Continuous Servo Write blocks.

-12

Arduino Serial Receive

Warning

Only connect serial port pins to devices that use 5 Volt TTL logic.
Do not connect these pins to an RS-232 serial interface, such
as the DE-9M connector on a computer, without limiting the
voltage. The RS-232 standard allows higher voltages that can
damage your hardware. For details, read the documentation
for your Arduino® hardware.

-13

Arduino Serial Receive

Dialog

Port Number
Enter the number of the serial port. For Arduino® Mega 2560,
enter 0 - 3. For Arduino® Uno, enter 0.

-14

Arduino Serial Receive

You can assign a Serial Transmit block and a Serial Receive block
to the same serial port.

Do not assign more than one Serial Receive block to the same
serial port.

Do not assign the pin numbers used by the serial port to other
blocks within the model.

Serial port 0 is connected to the USB port through a converter.
Do not use both serial port 0 and the USB port at the same time.
For example, do not use serial port 0 if you intend to use External
mode, because External mode requires the USB port.

Sample time
Specify how often this block reads the serial port buffer. Enter a
value greater than zero. This value defaults to a sample time of 1
second. The minimum value is 0.000001 second.

Smaller values require the processor to complete the same number
of instructions in less time, which can cause task overruns.

See Also Arduino Serial Transmit | “Install Support for Arduino® Hardware”
| “Use Serial Communications with Arduino® Hardware” | “Tune and
Monitor Models Running on Arduino® Mega 2560 Hardware” | “Detect
and Fix Task Overruns on Arduino® Hardware” |

External
Links

• http://arduino.cc/en/Serial/Read

-15

http://arduino.cc/en/Reference/Serial

Arduino Serial Transmit

Purpose Send buffered data to serial port

Library Target for Use with Arduino® Hardware

Description
Send buffered data to the specified serial port. For more information,
see “Use Serial Communications with Arduino® Hardware”.

The Arduino® Uno hardware has one serial port device, serial port 0,
connected to the digital pins marked TX 1 and RX 0. If you set the
Port number parameter to 0, this block transmits over the digital
pin marked TX 1.

The block input accepts vector or scalar uint8 data. To convert a data
source to uint8, use a Data Type Conversion block.

If you simulate your model without running it on the target hardware,
this block does nothing. See “Block Produces Zeros in Simulation”.

Do not use this block in models with the Standard Servo Read, Standard
Servo Write, and Continuous Servo Write blocks.

Warning

Only connect serial port pins to devices that use 5 Volt TTL logic.
Do not connect these pins to an RS-232 serial interface, such
as the DE-9M connector on a computer, without limiting the
voltage. The RS-232 standard allows higher voltages that can
damage your hardware. For details, read the documentation
for your Arduino® hardware.

-16

Arduino Serial Transmit

Dialog

Port Number
Enter the number of the serial port. For Arduino® Mega 2560,
enter 0 - 3. For Arduino® Uno, enter 0.

You can assign a Serial Transmit block and a Serial Receive block
to the same serial port.

Do not assign multiple Serial Transmit blocks to the same serial
port.

Do not assign the pin numbers used by the serial port to other
blocks within the model.

-17

Arduino Serial Transmit

Serial port 0 is connected to the USB port through a converter.
Do not use both serial port 0 and the USB port at the same time.
For example, do not use serial port 0 if you intend to use External
mode, because External mode requires the USB port.

See Also Arduino Serial Receive | “Install Support for Arduino® Hardware” |
“Use Serial Communications with Arduino® Hardware” | “Tune and
Monitor Models Running on Arduino® Mega 2560 Hardware” |

External
Links

• http://arduino.cc/en/Serial/Write

-18

http://arduino.cc/en/Reference/Serial

Arduino Standard Servo Read

Purpose Get position of standard servo motor shaft in degrees

Library Target for Use with Arduino® Hardware

Description
Measure the angle of a standard servo motor shaft in degrees, from 0
to 180.

The data type of the block output is uint8.

If you simulate your model without running it on the target hardware,
this block outputs zeroes. See “Block Produces Zeros in Simulation”.

Some limitations:

• Do not use Servo blocks with External mode or with models that
contain Serial Transmit or Serial Receive blocks.

• The maximum number of Servo blocks per model is 12 for Arduino®

Uno hardware, and 48 for Arduino® Mega 2560 hardware.

• With Arduino® Uno hardware, the Arduino® PWM block cannot use
digital pins 9 or 10 when the model contains Servo blocks.

• With Arduino® Mega 2560 hardware, the Arduino® PWM block
cannot use digital pins 11 or 12 when the model contains more than
12 Servo blocks.

-19

Arduino Standard Servo Read

Dialog

Pin number
Enter the number of the digital pin.

Do not assign the same pin number to multiple blocks within the
model.

For Arduino® Mega 2560, enter a pin number from 0 to 53.

For Arduino® Uno, enter a pin number from 0 to 13.

-20

Arduino Standard Servo Read

Sample time
Specify how often this block reads the pin value. Enter a value
greater than zero. This value defaults to a sample time of 1
seconds. The minimum value is 0.000001 second.

Smaller values require the processor to complete the same number
of instructions in less time, which can cause task overruns.

See Also Arduino Standard Servo Write | Arduino Continuous Servo
Write | “Install Support for Arduino® Hardware” | “Detect and Fix
Task Overruns on Arduino® Hardware” |

External
Links

• http://arduino.cc/en/Reference/ServoRead

-21

http://arduino.cc/en/Reference/Servo

Arduino Standard Servo Write

Purpose Set shaft position of standard servo motor

Library Target for Use with Arduino® Hardware

Description
Set the shaft position of a standard servo motor, from 0 to 180 degrees.

To rotate the servo shaft, send values from 0 to 180 to the block input.

Sending out-of-range values, such as -5 or 200, to the block input has
the same effect as sending the maximum or minimum input values.

The block input inherits the data type of the upstream block, and
internally converts it to uint8.

If you simulate your model without running it on the target hardware,
this block does nothing. See “Block Produces Zeros in Simulation”.

Some limitations:

• Do not use Servo blocks with External mode or with models that
contain Serial Transmit or Serial Receive blocks.

• The maximum number of Servo blocks per model is 12 for Arduino®

Uno hardware, and 48 for Arduino® Mega 2560 hardware.

• With Arduino® Uno hardware, the Arduino® PWM block cannot use
digital pins 9 or 10 when the model contains Servo blocks.

• With Arduino® Mega 2560 hardware, the Arduino® PWM block
cannot use digital pins 11 or 12 when the model contains more than
12 Servo blocks.

-22

Arduino Standard Servo Write

Dialog

Pin number
Enter the number of the digital output pin.

Do not assign the same pin number to multiple blocks within the
model.

For Arduino® Mega 2560, enter a pin number from 0 to 53.

For Arduino® Uno, enter a pin number from 0 to 13.

-23

Arduino Standard Servo Write

See Also Arduino Standard Servo Read | Arduino Continuous Servo Write
| “Install Support for Arduino® Hardware” |

External
Links

• http://arduino.cc/en/Reference/ServoWrite

-24

http://arduino.cc/en/Reference/ServoWrite

Arduino Continuous Servo Write

Purpose Set shaft speed of continuous rotation servo motor

Library Target for Use with Arduino® Hardware

Description
Set the direction and speed of a continuous rotation servo motor:

• Sending -90 to the block input produces the maximum rate of rotation
in one direction.

• Sending 90 to the block input produces the maximum rate of rotation
in the opposite direction.

• Sending 0 to the block input stops the servo motor.

• Sending out-of-range values, such as -95 or 200, to the block input
has the same effect as sending the maximum or minimum input
values.

The characteristics of some motors cause them to continue rotating
when the block input value is 0. In that case, you can experiment to find
an offset value that stops the motor.

With Arduino® Mega 2560 hardware, you can use External mode to
determine the offset while your model is running on the hardware. See
“Tune and Monitor Models Running on Arduino® Mega 2560 Hardware”.

The block input inherits the data type of the upstream block, and
internally converts it to uint8.

If you simulate your model without running it on the target hardware,
this block does nothing. See “Block Produces Zeros in Simulation”.

Some limitations:

-25

Arduino Continuous Servo Write

• Do not use Servo blocks with External mode or with models that
contain Serial Transmit or Serial Receive blocks.

• The maximum number of Servo blocks per model is 12 for Arduino®

Uno hardware, and 48 for Arduino® Mega 2560 hardware.

• With Arduino® Uno hardware, the Arduino® PWM block cannot use
digital pins 9 or 10 when the model contains Servo blocks.

• With Arduino® Mega 2560 hardware, the Arduino® PWM block
cannot use digital pins 11 or 12 when the model contains more than
12 Servo blocks.

-26

Arduino Continuous Servo Write

Dialog

Pin number
Enter the number of the digital output pin.

Do not assign the same pin number to multiple blocks within the
model.

For Arduino® Mega 2560, enter a pin number from 0 to 53.

For Arduino® Uno, enter a pin number from 0 to 13.

-27

Arduino Continuous Servo Write

See Also Arduino Standard Servo Read | Arduino Standard Servo Write
| “Install Support for Arduino® Hardware” |

External
Links

• http://arduino.cc/en/Reference/ServoWrite

-28

http://arduino.cc/en/Reference/ServoWrite

1 Configuration Parameters Dialog Box

Run on Target Hardware Pane

In this section...

“Run on Target Hardware Pane Overview” on page 1-4

“Target hardware” on page 1-5

“Enable External mode” on page 1-7

“Enable overrun detection” on page 1-8

“Digital output to set on overrun” on page 1-9

“Set host COM port” on page 1-10

“COM port number” on page 1-10

1-2

Run on Target Hardware Pane

In this section...

“Analog input reference voltage” on page 1-11

“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate” on page 1-12

1-3

1 Configuration Parameters Dialog Box

Run on Target Hardware Pane Overview
Specify the options for creating and running applications on target hardware.

Configuration

1 Choose the Target hardware in the Run on Target Hardware pane.

2 Set the parameters displayed for the selected device type.

3 Apply the changes.

To get help on an option

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

1-4

Run on Target Hardware Pane

Target hardware
Select the type of hardware upon which to run your model.

Changing this parameter updates the Configuration Parameters dialog so it
only displays parameters that are relevant to your target hardware.

If your target hardware is supported, but not available in the Target
hardware parameter options, use Target Installer to install support for your
target hardware. To use Target Installer, close the Configuration Parameters
dialog and enter targetinstaller in the MATLAB® Command Window.
After installing support for your target hardware, reopen the Configuration
Parameters dialog and select your target hardware.

Settings
Default: None

None
This setting means your model has not been configured to run on target
hardware. Choose your target hardware from the list of options.

Arduino Mega 2560
This setting displays the following configuration parameters for
Arduino® Mega 2560 hardware:

• “Enable External mode” on page 1-7

• “Enable overrun detection” on page 1-8

• “Digital output to set on overrun” on page 1-9

• “Set host COM port” on page 1-10

• “COM port number” on page 1-10

• “Analog input reference voltage” on page 1-11

• “Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3
baud rate” on page 1-12

Arduino Uno
This setting displays the following configuration parameters for Arduino
Uno hardware:

• “Enable overrun detection” on page 1-8

1-5

1 Configuration Parameters Dialog Box

• “Digital output to set on overrun” on page 1-9

• “Set host COM port” on page 1-10

• “COM port number” on page 1-10

• “Analog input reference voltage” on page 1-11

See Also

• “Install Support for Arduino Hardware”

1-6

Run on Target Hardware Pane

Enable External mode
Enable External mode to tune and monitor a model while it runs on your
target hardware.

With External mode, changing a parameter value in the model on the
host changes the corresponding value in the model running on the target
hardware. Similarly, scopes in the model display data from the model running
on target hardware.

Enabling External mode adds a lightweight server to the model running on
the target hardware. This server increases the processing burden upon the
target hardware, which can result in an overrun condition. If you enable the
Enable overrun detection check box, and the software reports an overrun,
consider disabling External mode.

Settings
Default: Disabled

Disabled
The model application does not support External mode.

Enabled
The model application supports External mode.

See Also

• “Enable overrun detection” on page 1-8

• “Set host COM port” on page 1-10

• “Tune and Monitor Models Running on Arduino Mega 2560 Hardware”

• “Use Serial Communications with Arduino Hardware”

1-7

1 Configuration Parameters Dialog Box

Enable overrun detection
Detect when a task overruns occurs in a Simulink® model running on the
target hardware. Indicate when an overrun has occurred.

A task overrun occurs if the target hardware is still performing one instance
of a task when the next instance of that task is scheduled to begin.

The “Detect and Fix Task Overruns” topics listed in the following “See Also”
subtopic describe how your target hardware indicates that an overrun has
occurred.

You can fix overruns by decreasing the frequency with which tasks are
scheduled to run, and by reducing the number or complexity of the tasks
defined by your model.

If those solutions do not fix the task overrun condition, and you are using
External mode, consider disabling External mode by clearing the Enable
External mode checkbox.

Settings
Default: Disabled

Disabled
Do not detect overruns.

Enabled
Detect overruns and generate an error message when an overrun occurs.

See Also

• “Digital output to set on overrun” on page 1-9

• “Enable External mode” on page 1-7

• “Detect and Fix Task Overruns on Arduino Hardware”

1-8

Run on Target Hardware Pane

Digital output to set on overrun
This parameter appears when the Enable overrun detection check box is
selected.

Select the digital output pin the Arduino hardware uses to signal a task
overrun.

Do not use a pin that is assigned to another block within the model.

Settings
Default: 13

See Also

• “Enable overrun detection” on page 1-8

• “Detect and Fix Task Overruns on Arduino Hardware”

1-9

1 Configuration Parameters Dialog Box

Set host COM port
This parameter only appears when the Target hardware parameter is set to
Arduino Mega 2560 or Arduino Uno.

Automatically detect or manually set the COM port your host computer uses
to communicate with the target hardware.

Warning Do not connect Arduino Uno and Arduino Mega 2560
to a RS-232 serial interface, commonly found on computers and
equipment. RS-232 interfaces can use voltages greater than 5 Volts,
which can damage your Arduino hardware.

Settings
Default: Automatically

Automatically
Let the software determine which COM Port your host computer uses.

Manually
Select this option to display the COM port number parameter.

See Also

• “COM port number” on page 1-10

COM port number
This parameter only appears when the Set host COM port parameter is
set to Manually.

Manually set the number of the COM Port the host computer uses to
communicate with the target hardware, and then enter it here.

Warning Do not connect Arduino Uno and Arduino Mega 2560
to a RS-232 serial interface, commonly found on computers and
equipment. RS-232 interfaces can use voltages greater than 5 Volts,
which can damage your Arduino hardware.

1-10

Run on Target Hardware Pane

Settings
Default: 0

See Also

• “Set host COM port” on page 1-10

Analog input reference voltage
This parameter only appears when the Target hardware parameter is set to
Arduino Mega 2560 or Arduino Uno.

Set the reference voltage used to measure inputs to the ANALOG IN pins.

Warning Only connect an external power source to AREF while this
parameter is set to External. Connecting an external power source
to AREF while this parameter is set to any other option exposes the
internal voltage references to the external voltage. This voltage
difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages
greater than 5 Volts. These greater voltages can damage your
Arduino hardware.

Settings
Default: Default

Default
Use the default operating voltage of the board. For Arduino Uno and
Arduino Mega 2560 the operating voltage is 5 Volts.

Internal (1.1 V)
Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.

Internal (2.56 V)
Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.

External
On the Arduino Uno and Arduino Mega 2560, use an external 0-5 volt
power supply connected to the AREF pin. This voltage should match

1-11

1 Configuration Parameters Dialog Box

the voltage of the power supply connected to the Arduino hardware.
If your application requires low-noise measurements, use this option
with a filtered power supply.

See Also

• Arduino Analog Input

Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud
rate, Serial 3 baud rate
Arduino Uno hardware has one serial port, Serial 0. Arduino Mega 2560
hardware has four serial ports, Serial 0 through Serial 3.

Set the baud rate of the serial port on the Arduino hardware.

Settings
Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 128000, 500000, 1000000

See Also

• Arduino Serial Receive

• Arduino Serial Transmit

1-12

	working_with_arduino_hardware
	toc
	Work with Arduino Hardware
	Install Support for Arduino Hardware
	Open Block Libraries for Arduino Hardware
	From the Command Line
	From the Simulink Library Browser

	Run Model on Arduino Hardware
	Prepare Models That Use Model Reference
	See Also

	Tune and Monitor Models Running on Arduino Mega 2560 Hardware
	About External Mode
	Run Your Model in External Mode
	Stop External Mode

	Use Serial Communications with Arduino Hardware
	Hardware
	Transmit Serial Data
	Receive Serial Data

	Detect and Fix Task Overruns on Arduino Hardware
	Troubleshoot Running Models on Arduino Hardware
	Block Produces Zeros in Simulation
	“Could not automatically set host COM port”

	run_on_target_hardware_arduino_blocks
	pseudo_simulink_gui_book_trash
	toc
	Configuration Parameters Dialog Box
	Run on Target Hardware Pane
	Run on Target Hardware Pane Overview
	Configuration
	To get help on an option

	Target hardware
	Settings
	See Also

	Enable External mode
	Settings
	See Also

	Enable overrun detection
	Settings
	See Also

	Digital output to set on overrun
	Settings
	See Also

	Set host COM port
	Settings
	See Also

	COM port number
	Settings
	See Also

	Analog input reference voltage
	Settings
	See Also

	Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Seri
	Settings
	See Also

